

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114

#### Hot Issue

1. Designated by Radio Research Institute

2. [Notification on Conformity Assessment of Broadcasting and Communication Equipment, etc.] Some revisions

3. ICR Polska MD Scope Expansion

4. Changes of Multi-site certification criteria and certification activity branch control criteria

- 5. K-OHSMS 18001 certification trend
- 6. Issue of a test report of KOLAS as to the railway goods
- 7. Autonomous vehicle system configuration, element technology and development stage
- 8. Development stage a Autonomous driving (SAE standard)



Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114



## Designated by Radio Research Institute



On November 29, 2017, I received the qualification from the National Institute of Radiological Research as **an Electromagnetic Compatibility Testing Laboratory.** 

Based on this, ICR is providing **KC test** certification registration.



## Designated by Radio Research Institute



#### Electromagnetic compatibility (03.011) \_Designation number: KR0165

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114

### **%** [Notification on Conformity Assessment of Broadcasting and Communication Equipment, etc.] Some revisions



### **1.** Amendment of conformity identification marking method for broadcasting communication equipment

 In order to prevent confusion and inconvenience between businesses and consumers under the reorganization of government Used as a permanent identification label "R" that is not affected by changes in the name of the department in charge
How to display identification code

| B            | - | с      | R        | м    | ſ | A       | в       | С       | ſ | x | х | х | х | х | х | x  | x  | x | х | х | х | x | x |
|--------------|---|--------|----------|------|---|---------|---------|---------|---|---|---|---|---|---|---|----|----|---|---|---|---|---|---|
| 0            |   | 2      | 3        | ٩    |   |         | 5       |         |   | 6 |   |   |   |   |   |    |    |   |   |   |   |   |   |
| 방송통신<br>기기식별 |   | 기<br>정 | 본인<br>보식 | 때 이었 |   | 신<br>정! | 청<br>보식 | 자<br> 별 |   |   |   |   |   |   | 제 | 품· | 식법 | 별 |   |   |   |   |   |

#### (New revision of existing broadcasting communication equipment identification code MSIP $\rightarrow$ R) 2. Amendment of Applicable Laws for Registration of Designated Laboratory Conformity

#### (a) mobile means Reclassification of power transmission equipment

| 4. Household electric appliances |                              | 1) Electric motor bicycle    |  |  |  |
|----------------------------------|------------------------------|------------------------------|--|--|--|
| and Electric motor current:      |                              | 2) Electric motor board      |  |  |  |
| Household electrical             | Power tools for moving means | 3) Electric motor wheelchair |  |  |  |
| electric heating devices and     |                              | 4) Electric motor scooter    |  |  |  |
| Other electrical equipment       |                              | 5) Other similar devices     |  |  |  |

#### **(b)** Incorporate fire fighting equipment into the conformity assessment target device

|                                | 1) short circuit alarm                                            | 10) Hydraulic opening and closing device for starting           |  |  |  |
|--------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
|                                | 2) Gas leakage alarm                                              | 11) Commercial kitchen<br>automatic fire extinguisher           |  |  |  |
|                                | 3) Receiver                                                       | 12) Automobile pressure,<br>overpressure adjustable<br>Tampere  |  |  |  |
|                                | 4) repeater                                                       | 13) Automatic closing device                                    |  |  |  |
| 16. Fire fighting<br>equipment | 5) sensor                                                         | 14) Cabinet Type Isfing Cooler<br>Facility                      |  |  |  |
|                                | 6) Residential kitchen automatic fire extinguisher                | 15) Flap damper                                                 |  |  |  |
|                                | 7) Cabinet type automatic fire<br>extinguisher                    | 16) Guide light                                                 |  |  |  |
|                                | 8) Gas, powder automatic fire extinguisher                        | 17) Emergency light                                             |  |  |  |
|                                | 9) Solid aerosol automatic fire<br>extinguisher 출저:http://www.rra | 18) Other fire fighting equipment<br>go.kr(국립전파연구원 고시 제2017-143 |  |  |  |

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114

## ICR Polska MD Scope Expansion



The Machinery Directive's task is to introduce rules about the sale of machines within the EU and to preserve the safety of consumers and workers.

If compliance is not met, it may prohibit placing them on the market or even order to withdrawal the machines that have already been placed on the market.

According to this rules, ICR Polska steadily expands **The Machinery Directive Scope**.

Additionally, **Mobile elevating work platforms** and **Vehicle Lifts** will be added to the scope in 2018.

## ICR Polska MD Scope Expansion



#### Vehicle Lifts

Vehicle Lifts should be compliant with EN 1493:2010. It provides the safety requirements and solutions needed for possible hazards (e.g. mechanical hazards, electrical hazards, operating hazards, overloading hazards etc.).

#### Mobile elevating work platforms

Mobile elevating work platforms should be compliant with EN 280:2013. Because people ride on the work platforms, it shall be installed the safe guard and designed the work platforms to consider hazards about not only basic hazards, but also falling, slipping.







## Changes of Multi–site certification criteria and certification activity branch control criteria

#### IAF MD1 will be published by combining MD19 and MD1

MD1 will be published in the first half of 2018. In the case of initial and recertification audit, 'multi-site which cannot be sampled', every site shall be audited. In the case of surveillance audit 30% of every site shall be audited.

## ■ The control criteria for certification activity branch will be tightened.

New IAF MD will be established, and risk assessment will be obliged. The contracted information for the branch shall be shared with the located national accreditation body.

# K–OHSMS 18001 certification

### KAB occupational health and safety management system certification

- Established: April 2002
- Certification standard: K-OHSMS 18001
- Number of certification body: 24
- Issued certificate: 2,311(Construction 50%,

Machinery, Electricity, Other transportation equipment 10% each)

# K–OHSMS 18001 certification

### ISO standard development status

The development of FDIS 45001 is finished in 20<sup>th</sup> October 2017, and it will be published in March 2018.

ISO 17021-10(Competence requirements for auditing and certification of occupational health and safety management systems) will be published in the second half of 2018(November~ December).

# K–OHSMS 18001 certification

### Migration instruction from OHSAS 18001 to ISO

#### 45001

- Document type: IAF MD
- Publication schedule: January ~ Feburary 2018
- Contents

- Certification body: Gap analysis, Migration plan development

- Accreditation Body: Accreditation assessor training, Migration program development.

※ If 1M/D off-site assessment is positive, the migration would be acceptable. However, if the off-site assessment is negative, office or witness audit may required.

- Certification body: Human resource training, Migration plan development, Migration audit M/D X Migration audit standard: OHSAS 18001 and equal standard

## Issue of a test report of KOLAS as to the railway goods



The ICR is recognized as an internationally accredited testing agency by the government(KOLAS, Korea Laboratory Accreditation Scheme) and provides product testing services with specialized skills and advanced testing equipment.

Recently, By expanding the test standards for railway equipment, it is possible to perform ' type approval ' work concerning railway equipment under the Railway Safety Act

#### What is 'type approval'?

Tests to verify safety and quality in relation to railway vehicle/equipment, whether the first built railway vehicle/equipment in accordance with the Railway Safety Act complies with the prescribed railway technical standards.



## The status of KOLAS–related accreditation

| Test method                 | Standard designation                                                                                                                    | Test method         | Standard designation                                                                                                |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|--|
| KS C IEC 62236-<br>1:2006   | Railway applications –<br>Electromagnetic<br>compatibility – Part 1 :<br>General                                                        | IEC 61373:2010      | Railway applications –<br>Rolling stock<br>equipment – Shock<br>and vibration tests                                 |  |
| KS C IEC 62236-<br>2:2006   | Railway applications –<br>Electromagnetic<br>compatibility – Part 2:<br>Emission of the whole<br>railway system to the<br>outside world | IEC 62498-3:2010    | Railway applications –<br>Environmental<br>conditions for<br>equipment – Part 3:<br>Equipment for<br>signalling and |  |
|                             | Railway applications –<br>Electromagnetic                                                                                               |                     | telecommunications                                                                                                  |  |
| KS C IEC 62236-3-<br>1:2006 | compatibility – Part 3-<br>1: Rolling stock –<br>Train and complete<br>vehicle                                                          | EN 50155:2007       | Railway applications –<br>Electronic equipment<br>used on rolling stock                                             |  |
| KS C IEC 62236-3-<br>2:2006 | Railway applications –<br>Electromagnetic<br>compatibility – Part 3-<br>2: Rolling stock -<br>Apparatus                                 | EN 61373:2010       | Railway applications –<br>Rolling stock<br>equipment – Shock<br>and vibration tests                                 |  |
|                             | Railway applications –<br>Electromagnetic<br>compatibility – Part 4:                                                                    | KS C IEC 60571:2002 | Railway applications –<br>Electronic equipment<br>used on rolling stock                                             |  |
| KS C IEC 62236-<br>4:2006   | Emission and<br>immunity of the<br>signalling and<br>telecommunications                                                                 | KS C IEC 61373:2002 | Railway applications –<br>Rolling stock<br>equipment – Shock<br>and vibration tests                                 |  |
| KS C IEC 62236-<br>5:2006   | Railway applications –<br>Electromagnetic<br>compatibility – Part 5:<br>Emission and<br>immunity of fixed                               | KS C 7620:2003      | Railway car luminaries<br>for fluorescent lamps                                                                     |  |
|                             | power supply<br>installations and<br>apparatus                                                                                          | KS R 9144:2014      | Test methods for<br>vibration of parts of<br>railway rolling stock                                                  |  |
| IEC 60571:2012              | Railway applications –<br>Electronic equipment<br>used on rolling stock                                                                 | KS R 9146:2002      | Railway Rolling stock<br>parts – Test methods<br>for shock                                                          |  |

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114



## The status of KOLAS–related accreditation

| Test method    | Standard designation                                                                                                                             |  | Test method                | Standard designation                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------|---------------------------------------------------------------------------------|
| KS R 9156:2002 | General rules for tests<br>of electronic<br>equipment used on<br>railwayrolling stock<br>Parts for railway signal<br>– Vibration test<br>methods |  | KS R 9213:2007             | Railway rolling stock –<br>High and low<br>temperature test<br>methods of parts |
|                |                                                                                                                                                  |  | KRS CS 0003-13:2013        | Railway Rolling Stock-<br>Test methods : Train<br>signaling and                 |
| KS R 9186:1996 |                                                                                                                                                  |  |                            | telecommunications                                                              |
|                | Parts For Railway<br>Signaling Waterproof<br>Test Methods                                                                                        |  | KRS SG 0014-<br>16(R):2016 | Power Supply for<br>Signal Device                                               |
| KS R 9189:2003 |                                                                                                                                                  |  | KRS SG 0015-<br>14(R):2014 | Electronic Interlocking<br>Device                                               |
| KC D 0101.100C | High and Low<br>temperature testing                                                                                                              |  |                            |                                                                                 |
| K2 K 9191:1990 | methods for parts of railway signal                                                                                                              |  |                            | The Data Transmission                                                           |
| KS R 9192:1996 | Change Of<br>Temperature Testing<br>Method For Parts of<br>Railway Signaling                                                                     |  | KRS CM 0026-16:2016        | Train and Wayside(On-<br>board Equipment)-Test<br>methods                       |
|                | Insulation Resistance                                                                                                                            |  |                            |                                                                                 |
| KS R 9193:1996 | And Withstand Voltage<br>Testing Methods Of<br>Parts For Railway<br>Signaling                                                                    |  | KRS SG 0033-<br>14(R):2014 | Insulated Audio<br>Frequency Track Circuit                                      |
|                | Test Methods For<br>Insulation Resistance                                                                                                        |  |                            |                                                                                 |
| KS R 9197:1996 | And Withstand Voltage<br>Of Railway Rolling<br>Stock                                                                                             |  | KRS SG 0036-<br>16(R):2016 | Track Circuit Function<br>Monitoring Device<br>(TLDS)                           |

## The status of KOLAS–related accreditation



| Test method                | Standard designation                               | Test method                | Standard designation                                                    |
|----------------------------|----------------------------------------------------|----------------------------|-------------------------------------------------------------------------|
| KRS SG 0038-<br>16(R):2016 | Non-insulated Audio<br>Frequency Track Circuit     | KRS SG 0059-<br>14(R):2014 | Automatic Train Stop<br>Wayside Transmitter                             |
| KRS SG 0051-<br>14(R):2014 | Railroad Crossing<br>Control Unit(Plug in<br>Type) | KRS SG 0067-<br>14(R):2014 | Track-side subsystem-<br>Test methods :<br>Equipments for<br>Signalling |
| KRS SG 0054-<br>14(R):2014 | Single Track Automatic<br>Block Control Device     | KRCS C027 03:2011          | Signal Floating<br>Rectifier                                            |
| KRS SG 0055-<br>14(R):2014 | Double Track<br>Automatic Block<br>Control Device  | KRCS C229 03:2016          | Electronic Interlocking<br>System                                       |

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048)



### Autonomous vehicle system configuration, element technology and development stage

According to the World Health Organization (WHO), millions of people are injured every day in the world and more than 3,500 people die from traffic accidents. The annual number of traffic accidents is 1.3 million, and if the increase is large, it is estimated that the number of traffic accident deaths in 2020 will reach 1.9 million a year. Also, according to the statistics of Korea's Road Traffic Corporation in 2015, more than 95% of all traffic accidents are caused by driver's carelessness.

Therefore, in order to minimize driver 's negligence and to reduce the loss of life caused by traffic accidents, advanced nations in the automotive industry have been supporting the development of autonomous vehicle technology by putting a lot of budget from early 90' s. The function of autonomous vehicle is largely composed of recognition, judgment and control.

[Source] Autonomous vehicle system configuration, element technology and development stage [Writer] MOT Consultant



## Autonomous vehicle system configuration, element technology and development stage

| Autonomous<br>config                              | vehicle system<br>guration                                                                         | Element technology                                                                                             | ICT and OEM role<br>expected                                                                     |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
|                                                   | Path navigation                                                                                    | Precision mapping and<br>positioning<br>(High-altitude maps and<br>high-precision GPS<br>devices)              | Lack of technical<br>standards and open<br>systems                                               |  |  |  |
| External<br>driving<br>environment<br>recognition | Fixed entity<br>recognition<br>(Lanes, tunnels,<br>etc.)                                           | V2X communication<br>(Vehicle to infra / Vehicle)<br>(Adjacent vehicle and<br>infrastructure<br>communication) | -> We look at the<br>trend of<br>standardization of<br>technology rather<br>than proprietary     |  |  |  |
|                                                   | Variable -<br>Moving object<br>recognition<br>(vehicles,<br>pedestrians,<br>traffic lights, etc.)  | ADAS Sensor<br>(Lidar Sterep, Camera,<br>Rader etc)                                                            | relations with various<br>companies                                                              |  |  |  |
| Judgment and<br>Driving                           | Situation<br>determination<br>and strategy<br>establishment<br>(car change,<br>intervention, etc.) | Learning type judgment<br>and control system<br>(Autonomous driving<br>record based algorithm)                 | Gain technology<br>leadership with<br>existing OEM realm<br>And Investment Area<br>for Retention |  |  |  |
| Strategy                                          | Driving trajectory<br>generation<br>(trajectory, speed,<br>etc                                     | Sensor based driving<br>situation recognition<br>system<br>(Sensor based operation)                            | differentiation through<br>independent<br>investment<br>-> Prior to the full-                    |  |  |  |
| Vehicle control                                   | Vehicle control<br>(Steering,<br>acceleration,<br>deceleration, etc.)                              | Integrated Vehicle<br>Control Solutions<br>(Existing ADAS-based<br>vehicle control system)                     | driving car and utilize<br>demonstration<br>materials                                            |  |  |  |

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048) Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114

## Development stage a Autonomous driving (SAE standard)



The Road Traffic Safety Administration and the Automotive Engineering Society (SAE) of the United States present the level of autonomous driving technology step by step.

Of these, SAE standards are the most common. SAE International's (On-Road Automated Vehicle Standards Committee), a global association of more than 128,000 engineers and related technical experts engaged in the aerospace, automotive and commercial vehicle industries in 2014, L5) proposed an automation level.

[Source] Autonomous vehicle system configuration, element technology and development stage [Writer] MOT Consultant

Address :3611, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do , South Korea (10048)

## Development stage a Autonomous driving (SAE standard)



| Automati<br>on stage                      | Characteris<br>tic        | Contents                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A person monitors the driving environment |                           |                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Level 0                                   | Non-<br>automatic         | A step in which the driver entirely controls all operations and promotes all dynamic driving                                                                                                                                                     |  |  |  |  |  |
| Level 1                                   | Driver<br>assistance      | Where in the vehicle is run by a steering assist<br>system or an acceleration / deceleration support<br>system, but the person performs all the functions<br>for the dynamic running of the vehicle                                              |  |  |  |  |  |
| Level 2                                   | Partial<br>automation     | Although the car is operated by the steering assist<br>system or the acceleration / deceleration support<br>system, the driving environment is monitored by<br>the person and the responsibility for safe driving<br>is also borne by the driver |  |  |  |  |  |
| A                                         | utonomous dri             | iving system monitors driving environment                                                                                                                                                                                                        |  |  |  |  |  |
| Level 3                                   | Conditional<br>automation | The system controls all aspects of the driving<br>operation, but if the system asks the driver to<br>intervene, the driver must properly control the<br>vehicle and the responsibility lies with the driver.                                     |  |  |  |  |  |
| Level 4                                   | Advanced<br>automation    | The system is carried out both in the core control<br>of the driving, in the driving environment<br>monitoring, and in the emergency, but the system<br>is not always controlled at all times.                                                   |  |  |  |  |  |
| Level 5                                   | Fully<br>automated        | The system is in charge of all road conditions and environments.                                                                                                                                                                                 |  |  |  |  |  |



www.icrqa.com

ICRO-31/R20161125 본 문서는 법률 제 14088호 저작권법의 보호대상이며, ICR의 지적 자산으로 불법 편집 및 복사를 금합니다.

| Address :3611, | Hagun-ri, | Yangchon-eup, | Gimpo-si, |
|----------------|-----------|---------------|-----------|
| Gyeonggi-do,   | South Kor | ea (10048)    |           |

Company Id No : 110111-243147 Tax & VAT Id No : 105-86-35114